Algorithms for Linear Algebra Problems over Principal Ideal Rings
نویسندگان
چکیده
We introduce a generalization of the Hermite normal form for matrices over a principal ideal ring R which may contain zero divisors. That normal form allows us to solve the following basic linear algebra problems. Equality decision, containment test and element test for submodules of R k , k 2 IN. The determination of images, kernels, and inverse images of homomorphisms ' : R l ! R k , l; k 2 IN. We analyze the complexity of the algorithms and describe experimental results for R = ZZ=mZZ with positive composite integers m. Using our algorithms is much more eecient than solving the above problems via Hermite normal form computation over ZZ.
منابع مشابه
Formalized linear algebra over Elementary Divisor Rings in Coq
This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely presented modules over such rings and the uniqueness of the Smith normal form up to...
متن کاملThe principal ideal subgraph of the annihilating-ideal graph of commutative rings
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
متن کاملLexicodes over Finite Principal Left Ideal Rings
Let R be a finite principal left ideal ring. Via a total ordering of the ring elements and an ordered basis a lexicographic ordering of the module R is produced. This is used to set up a greedy algorithm that selects vectors for which all linear combination with the previously selected vectors satisfy a pre-specified selection property and updates the to-be-constructed code to the linear hull o...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملAn algorithm for commutative semigroup algebras which are principal ideal rings
Associative and commutative algebras with identity have various well-known applications. In particular, many classical codes are ideals in commutative algebras (see [4], [12] for references). Computer storage, encoding and decoding algorithms simplify if all these codes have single generator polynomials. Thus it is of interest to determine when all ideals of an algebra are principal. In [5] Dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996